A large deviation principle for empirical measures on Polish spaces: Application to singular Gibbs measures on manifolds
نویسندگان
چکیده
منابع مشابه
Deviation Measures on Banach Spaces and Applications
In this article we generalize the notion of the deviation measure, which were initially defined on spaces of squarely integrable random variables, as an extension of the notion of standard deviation. We extend them both under a frame which requires some elements from the theory of partially ordered linear spaces and also under a frame which refers to some closed subspace, whose elements are sup...
متن کاملOn the Variational Principle for Generalized Gibbs Measures
We present a novel approach to establishing the variational principle for Gibbs and generalized (weak and almost) Gibbs states. Limitations of a thermodynamic formalism for generalized Gibbs states will be discussed. A new class of intuitively Gibbs measures is introduced, and a typical example is studied. Finally, we present a new example of a non-Gibbsian measure arising from an industrial ap...
متن کاملJoint Large Deviation principle for empirical measures of the d-regular random graphs
For a $d-$regular random model, we assign to vertices $q-$state spins. From this model, we define the \emph{empirical co-operate measure}, which enumerates the number of co-operation between a given couple of spins, and \emph{ empirical spin measure}, which enumerates the number of sites having a given spin on the $d-$regular random graph model. For these empirical measures we obtain large devi...
متن کاملVariational Principle for Fuzzy Gibbs Measures
In this paper we study a large class of renormalization transformations of measures on lattices. An image of a Gibbs measure under such transformation is called a fuzzy Gibbs measure. Transformations of this type and fuzzy Gibbs measures appear naturally in many fields. Examples include the hidden Markov processes (HMP), memoryless channels in information theory, continuous block factors of sym...
متن کاملLarge Deviation Principles for Empirical Measures of Coloured Random Graphs
Abstract. For any finite coloured graph we define the empirical neighbourhood measure, which counts the number of vertices of a given colour connected to a given number of vertices of each colour, and the empirical pair measure, which counts the number of edges connecting each pair of colours. For a class of models of sparse coloured random graphs, we prove large deviation principles for these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
سال: 2019
ISSN: 0246-0203
DOI: 10.1214/18-aihp922